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Abstract

The method of conjugate directions provides
a very effective way to optimize large, deter-
ministic systems by gradient descent. In its
standard form, however, it is not amenable
to stochastic approximation of the gradient.
Here we explore ideas from conjugate gra-
dient in the stochastic (online) setting, us-
ing fast Hessian-gradient products to set up
low-dimensional Krylov subspaces within in-
dividual mini-batches. In our benchmark ex-
periments the resulting online learning algo-
rithms converge orders of magnitude faster
than ordinary stochastic gradient descent.

1 INTRODUCTION

1.1 CONJUGATE GRADIENT

For the optimization of large, differentiable systems,
algorithms that require the inversion of a curvature
matrix (Levenberg, 1944; Marquardt, 1963), or the
storage of an iterative approximation of that inverse
(quasi-Newton methods such as BFGS— see Press
et al., 1992, p. 425ff), are prohibitively expensive. Con-
jugate gradient methods (Hestenes and Stiefel, 1952),
which exactly minimize a d-dimensional unconstrained
quadratic problem in d iterations without requiring ex-
plicit knowledge of the curvature matrix, have become
the method of choice for such problems.

1.2 STOCHASTIC GRADIENT

Empirical loss functions are often minimized using
noisy measurements of gradient (and, if applicable,
curvature) taken on small, random subsamples (“mini-
batches”) of data, or even individual data points. This
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is done for reasons of computational efficiency on large,
redundant data sets, and out of necessity when adapt-
ing online to a continual stream of noisy, potentially
non-stationary data. Unfortunately the fast conver-
gence of conjugate gradient breaks down when the
function to be optimized is noisy, since this makes it
impossible to maintain the conjugacy of search direc-
tions over multiple iterations. The state of the art
for such stochastic problems is therefore simple gradi-
ent descent, coupled with adaptation of local step size
and/or momentum parameters.

1.3 EFFICIENT CURVATURE
MATRIX-VECTOR PRODUCTS

The most advanced parameter adaptation methods
for stochastic gradient descent (Orr, 1995; Schrau-
dolph, 1999, 2002; Graepel and Schraudolph, 2002)
rely on fast curvature matrix-vector products that
can be obtained efficiently and automatically (Pearl-
mutter, 1994; Schraudolph, 2002). Their calcula-
tion does not require explicit storage of the Hessian,
which would be O(d2); the same goes for other mea-
sures of curvature, such as the Gauss-Newton approx-
imation of the Hessian, and the Fisher information
matrix (Schraudolph, 2002). Algorithmic differenti-
ation software1 provides generic implementations of
the building blocks from which these algorithms are
constructed. Here we employ these techniques to
efficiently compute Hessian-gradient products which
we use to implement a stochastic conjugate direction
method.

2 STOCHASTIC QUADRATIC
OPTIMIZATION

2.1 DETERMINISTIC BOWL

The d-dimensional quadratic bowl provides us with a
simplified test setting in which every aspect of the op-

1See http://www-unix.mcs.anl.gov/autodiff/



timization can be controlled. It is defined by the un-
constrained problem of minimizing with respect to d
parameters w the function

f(w) =
1
2

(w −w∗)T JJT (w −w∗) , (1)

where the Jacobian J is a d × d matrix, and w∗ the
location of the minimum, both of our choosing. By
definition the Hessian H̄ = JJT is positive semidef-
inite and constant with respect to the parameters w;
these are the two crucial simplifications compared to
more realistic, non-linear problems. The gradient here
is ḡ = ∇f(w) = H̄(w −w∗).

2.2 STOCHASTIC BOWL

The stochastic optimization problem analogous to the
deterministic one above is the minimization (again
with respect to w) of the function

f(w,X) =
1
2 b

(w−w∗)T JXXTJT (w−w∗) , (2)

where X = [x1,x2, . . . xb] is a d× b matrix collecting
a batch of b random input vectors to the system, each
drawn i.i.d. from a normal distribution: xi ∼ N(0, I).
This means that E[XXT ] = b I, so that in expecta-
tion this is identical to the deterministic formulation
given in (1):

EX [f(w,X)] =
1
2 b

(w−w∗)T JE[XXT ]JT(w−w∗) = f(w) . (3)

The optimization problem is harder here since the ob-
jective can only be probed by supplying stochastic in-
puts to the system, giving rise to the noisy estimates
H = b−1JXXTJT and g = ∇wf(w,X) = H(w−w∗)
of the true Hessian H̄ and gradient ḡ, respectively.
The degree of stochasticity is determined by the batch
size b; the system becomes deterministic in the limit
as b →∞.

2.3 LINE SEARCH

A common optimization technique is to first determine
a search direction, then look for the optimum in that
direction. In a quadratic bowl, the step from w to the
minimum along direction v is given by

∆w = − gT v

vT Hv
v . (4)

Hv can be calculated very efficiently (Pearlmutter,
1994), and we can use (4) in stochastic settings as
well. Line search in the gradient direction, v = g, is
called steepest descent. When fully stochastic (b=1),
steepest descent degenerates into the normalized LMS
method known in signal processing.

Figure 1: Distribution of stochastic gradient steps
from equivalent starting points (crosses) with (circles,
right) vs. without (ellipses, left, scaled arbitrarily) line
search in an ill-conditioned quadratic bowl. Black is
high, white low probability density. Compare to de-
terministic steepest descent (arrows).

2.4 CHOICE OF JACOBIAN

For our experiments we choose J such that the Hessian
has a) eigenvalues of widely differing magnitude, and
b) eigenvectors of intermediate sparsity. These con-
ditions model the mixture of axis-aligned and oblique
“narrow valleys” that is characteristic of multi-layer
perceptrons, and a primary cause of the difficulty in
optimizing such systems. We achieve them by impos-
ing some sparsity on the notoriously ill-conditioned
Hilbert matrix, defining

(J)ij
def=


1

i+j−1 if imod j = 0
or j mod i = 0 ,

0 otherwise .

(5)

We call the optimization problem resulting from set-
ting J to this matrix the modified Hilbert bowl. In
the experiments reported here we used the modified
Hilbert bowl of dimension d = 5, which has a condi-
tion number of 4.9 · 103.

2.5 STOCHASTIC ILL-CONDITIONING

Such ill-conditioned systems are particularly challeng-
ing for stochastic gradient descent. While directions
associated with large eigenvalues are rapidly opti-
mized, progress along the floor of the valley spanned
by the small eigenvalues is extremely slow. Line search
can ameliorate this problem by amplifying small gradi-
ents, but for this to happen the search direction must
lie along the valley floor in the first place. In a stochas-
tic setting, gradients in that direction are not just
small but extremely unlikely : in contrast to determin-
istic gradients, stochastic gradients contain large com-
ponents in directions associated with large eigenvalues
even for points right at the bottom of the valley. Fig-
ure 1 illustrates (for b = 1) the consequence: although
a line search can stretch the narrow ellipses of possi-
ble stochastic gradient steps into circles through the
minimum, it cannot shift any probability mass in that
direction.
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Figure 2: Construction of the conjugate direction c by
subtracting from gradient g its projection onto Hg.

3 STOCHASTIC CONJUGATE
DIRECTIONS

Looking for ways to improve the convergence of
stochastic gradient methods in narrow valleys, we note
that relevant directions associated with large eigenval-
ues can be identified by multiplying the (stochastic
estimates of) Hessian H and gradient g of the system.
Subtracting the projection of g onto Hg from g (Fig-
ure 2) then yields a conjugate descent direction c that
emphasizes directions associated with small eigenval-
ues, by virtue of being orthogonal to Hg:

c = g − g THg

g THHg
Hg (6)

Figure 3 shows that stochastic descent in direction of
c (dotted) indeed sports much better late convergence
than steepest descent (dashed). Since directions with
large eigenvalues are subtracted out, however, it takes
far longer to reach the valley floor in the first place.

3.1 TWO-DIMENSIONAL METHOD

We can combine the respective strengths of gradi-
ent and conjugate direction by performing, at each
stochastic iteration, a two-dimensional minimization
in the plane spanned by g and Hg. That is, we seek
the α1, α2 that produce the optimal step

∆w = α1g + α2Hg . (7)

Using g
def= H(w−w∗) gives ∆g = α1Hg + α2HHg.

We now express the optimality condition as a system of
linear equations in the quadratic forms qi

def= gT Hig:

gT (g + ∆g) = q0 + α1 q1 + α2 q2
!= 0 (8)

gT H (g + ∆g) = q1 + α1 q2 + α2 q3
!= 0 (9)

Solving this yields

α1 =
q0q3 − q1q2

q 2
2 − q1q3

, α2 =
q 2
1 − q0q2

q 2
2 − q1q3

(10)

Figure 3 shows that this technique (dot-dashed) indeed
combines the advantages of the gradient and conjugate
directions.
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Figure 3: Log-log plot of average loss (over 100 runs)
vs. number of stochastic iterations (b = 3) in modi-
fied Hilbert bowl when minimizing in: direction of g
(dashed), direction of c (dotted), plane spanned by
g and Hg (dot-dashed), and subspace spanned by g,
Hg, and HHg (dot-dot-dashed). Compare to normal
conjugate gradient across mini-batches (solid line).

3.2 STOCHASTIC KRYLOV SUBSPACE

This approach can be extended to performing mini-
mizations in the m-dimensional, stochastic Krylov sub-
space Km

def= [g,Hg, . . . Hm−1g] with m ≤ min(d, b).
The expansion of ∆g in Km is given by

∆g =
m∑

i=1

αi Hig ; (11)

for optimality we require

q + Qα
!= 0 ⇒ α = −Q−1q (12)

with

q
def=


q0

q1

...
qm−1

 , α
def=


α1

α2

...
αm

 ,

Q
def=


q1 q2 . . . qm

q2 q3 . . . qm+1

...
...

. . .
...

qm qm+1 . . . q2m−1

 (13)

Q and α can be flipped to bring (12) into the form
of a standard Toeplitz system, which can be solved in
as little as O

(
m log2m

)
operations (Press et al., 1992,

p. 92ff). One can either do this numerically at each
iteration, or simply use a precomputed analytic so-
lution. The analytic solution of the first-order system
(i.e., steepest descent) is α1 = −q0/q1, as evident from
(4); for m = 2 it is given in (10); for the third-order



system it is

α1u = q0q
2
4 + q1q2q5 + q2q

2
3 − q0q3q5 − q1q3q4 − q4q

2
2,

α2u = q1q2q4 + q0q2q5 + q1q
2
3 − q5q

2
1 − q3q

2
2 − q0q3q4,

α3u = q0q
2
3 + q 2

1 q4 + q 3
2 − q0q2q4 − 2q1q2q3, with

u = q1q3q5 + 2q2q3q4 − q1q
2
4 − q 2

2 q5 − q 3
3 . (14)

The quadratic forms q0 through q2m−1 required by ei-
ther solution strategy can be calculated efficiently as
inner products of the m fast Hessian-vector products
Hig , 0≤ i≤m. Figure 3 (dot-dot-dashed) illustrates
the rapid convergence of this approach for m = 3.

3.3 RELATION TO CONJUGATE
GRADIENT METHODS

It has not escaped our notice that on quadratic opti-
mization problems, instead of solving this linear sys-
tem of equations explicitly, we can equivalently per-
form m steps of ordinary conjugate gradient within
each mini-batch to find the optimum in the Krylov
subspace Km. Instead of a single m-dimensional op-
timization, we then have m successive line searches
according to (4). The initial search direction is set to
the gradient, v0 := g; subsequent ones are calculated
via the formula

vt+1 =
g T

t+1Hvt

v T
t Hvt

vt − gt+1 (15)

or one of its well-known variants (such as Fletcher-
Reeves or Polak-Ribiere — see Press et al., 1992,
p. 420ff). The crucial difference to standard conju-
gate gradient techniques is that here we propose to
perform just a few steps of conjugate gradient within
each small, stochastic mini-batch. A reset to the gra-
dient direction when moving on to another mini-batch
is not only recommended but indeed mandatory for
our approach to work, since otherwise the stochasticity
collapses the Krylov subspace. To illustrate, we show
in Figure 3 (solid line) the inadequate performance of
standard conjugate gradient when misapplied in this
fashion.

3.4 NON-REALIZABLE PROBLEMS

Our stochastic quadratic bowl (2) models realizable
problems, i.e., those where the loss at the optimum
reaches zero for all inputs:

(∀X) f(w∗,X) = 0 (16)

Of greater practical relevance are non-realizable prob-
lems, in which the optimum carries a non-zero loss
reflecting the best compromise between conflicting de-
mands placed on the model by the data. We model
this by incorporating a multivariate Gaussian random
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Figure 4: Log-log plot of average excess loss (over
10 runs) on the non-realizable modified Hilbert bowl
against number of cycles for our stochastic Krylov sub-
space method (m = 3) with adaptive (solid) vs. vari-
ous fixed batch sizes (dashed). Also shown: steepest
descent (m = 1) with adaptive batch size (dotted).

vector r with zero mean and variance E[rrT ] = σ2I
into our objective, which now becomes

fσ(w,X) =
1
2 b

eTe , where (17)

e
def= XTJT (w −w∗) + r .

This makes the expected loss at the optimum w∗ be

E[fσ(w∗,X)] =
1
2 b

E[rTr] = 1
2 σ2. (18)

Moreover, the presence of r makes it impossible to de-
termine w∗ precisely from a finite data sample; the
smaller the sample size b, the greater (for a given σ)
the uncertainty in w∗. Conventional stochastic gradi-
ent methods address this issue by multiplying the gra-
dient step with a rate factor that is gradually annealed
towards zero, thus effectively averaging the gradient
over progressively larger stretches of data.

Here, however, we invest significantly greater compu-
tational effort (proportional to the order m of our
Krylov subspace) into learning from each given batch
of data; taking only partial— and, in the limit, in-
finitesimal— steps towards the inferred goal is there-
fore not attractive. Instead, we propose to adaptively
increase the batch size b over time. Specifically, when-
ever we fail to reduce the loss (compared to the pre-
vious batch of data), we know that this is due to the
uncertainty in w∗, and consequently double the batch
size b to obtain a better estimate.

Figure 4 shows the performance of the resulting al-
gorithm (solid) on the non-realizable modified Hilbert
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Figure 5: The four regions benchmark (left), and the
neural network trained on it (right).

bowl with σ = 10−2, d = 5, m = 3, and initial batch
size b0 = 10. For fair comparison to various fixed batch
sizes (dashed) as well as steepest descent (dotted), we
plot excess loss — i.e., that above f(w∗) —against the
number of cycles, obtained by multiplying the number
of data points seen with the Krylov subspace order m.

For this stationary optimization problem, our simple
batch size adaptation heuristic is successful in obtain-
ing the rapid initial convergence characteristic of small
batch sizes while eliminating the noise floor that limits
asymptotic performance for any fixed batch size. We
also see that our stochastic Krylov subspace approach
continues to perform well for this non-realizable case
in that it greatly outperforms steepest descent; its con-
vergence could be further hastened by increasing the
subspace order, up to m = min(b, d). Finally, we note
in passing that as expected for our stochastic setting,
the naive implementation of conjugate gradient— that
is, a single iteration per batch, with no reset between
batches — performs very poorly here.

3.5 NON-LINEAR PROBLEMS

An extension of our techniques to non-linear optimiza-
tion problems, such as online learning in multi-layer
perceptrons, raises additional questions. In this case,
conjugate gradient methods are not equivalent to the
explicit solution of (12), raising the question which is
preferable in the stochastic gradient setting. Both ap-
proaches must be protected against near-zero or neg-
ative eigenvalues of H (Møller, 1993; Schraudolph,
2002). Here we report on our first experiments de-
signed to begin exploring these issues.

3.5.1 Four Regions Benchmark

We are using the “four regions” benchmark (Singhal
and Wu, 1989), on which we have extensive experience
with accelerated stochastic gradient methods (Schrau-
dolph, 1999, 2002; Graepel and Schraudolph, 2002).
A fully connected feedforward multi-layer perceptron
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Figure 6: Log-log plot of average loss (over 10 runs)
on the four regions problem against number of cycles
for our stochastic Krylov subspace method up to m =
3. Compare to normal conjugate gradient (solid) and
stochastic meta-descent with b = 10 (dotted).

with two hidden layers of 10 units each (Figure 5,
right) is to classify two continuous inputs in the range
[-1,1] into four disjoint, non-convex regions (Figure 5,
left). We use the standard softmax output nonlin-
earity with cross-entropy loss function (Bishop, 1995,
chapter 6), and hyperbolic tangent hidden units.

For each run the 184 weights (including bias weights
for all units) are initialized to uniformly random values
in the range [-0.3,0.3]. Training patterns are generated
online by drawing independent, uniformly random in-
put samples. To obtain an unbiased estimate of gener-
alization ability, we record the network’s loss on each
batch of samples before using it for optimization.

Since our non-linear optimization setup does not yet
permit batch size adaptation, we fix the batch size at
b = 500. To avoid near-zero or negative eigenvalues
of H we instead use G + λI throughout, where G
is an extended Gauss-Newton approximation of the
Hessian (Schraudolph, 2002). Since it is not clear yet
whether (and how) methods that vary the trust region
parameter λ (e.g., Møller, 1993) can be adapted to
our stochastic setting, we simply use the smallest fixed
value found to provide reasonably stable convergence,
namely λ = 10.

3.5.2 Results

Figure 6 shows that even a batch size of b = 500, the
remaining stochasticity in the problem causes conven-
tional conjugate gradient (solid line) to peter out at a
loss of about 0.25. By contrast, our stochastic Krylov
subspace method— implemented via explicit solution
of the Toeplitz system (12) —continues to reduce the
loss, converging at a rate that increases with order



m. Due to the large batch size, however, it does not
compare well to stochastic meta-descent (Schraudolph,
1999), a local learning rate adaptation method that
makes do with far smaller mini-batches (dotted line;
parameters: b = 10, λ = 0.998, µ = 0.05,p0 = 0.1). A
further increase of m may help narrow this gap.

We also found that performing 2-3 steps of conjugate
gradient within each batch, using (4) as a simple line
search, resulted in performance even worse than con-
ventional conjugate gradient (Figure 6, solid line). A
more accurate, iterative line search is bound to im-
prove this, albeit at significant computational expense;
directly solving the Toeplitz system —which does not
involve costly line searches —may well be preferable.

4 SUMMARY AND OUTLOOK

We considered the problem of stochastic ill-condi-
tioning of optimization problems that leads to inef-
ficiency in standard stochastic gradient methods. By
geometric arguments we arrived at conjugate search di-
rections that can be found efficiently by fast Hessian-
vector products. The resulting algorithm can be in-
terpreted as a stochastic conjugate gradient technique
and as such introduces Krylov subspace methods into
stochastic optimization. Numerical results show that
our approach outperforms standard gradient descent
for unconstrained quadratic optimization problems —
realizable and non-realizable — by orders of magnitude
in the stochastic setting where standard conjugate gra-
dient fails. First experiments with the four regions
benchmark indicate that our approach improves upon
standard conjugate gradient methods for non-linear
problems as well.

We are now working to advance our implementation of
non-linear optimization by incorporating adaptation
of batch size and trust region parameters, as well as
a Toeplitz solver for orders m > 3. We are also in-
terested in developing better methods for controlling
batch size and subspace order than the simple heuristic
employed in Section 3.4.
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