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Abstract. The method of conjugate gradients provides a very effective
way to optimize large, deterministic systems by gradient descent. In its
standard form, however, it is not amenable to stochastic approximation
of the gradient. Here we explore ideas from conjugate gradient in the
stochastic (online) setting, using fast Hessian-gradient products to set up
low-dimensional Krylov subspaces within individual mini-batches. In our
benchmark experiments the resulting online learning algorithms converge
orders of magnitude faster than ordinary stochastic gradient descent.

1 Introduction

Conjugate gradient. For the optimization of large, differentiable systems,
algorithms that require the inversion of a curvature matrix (e.g., Levenberg-
Marquardt [1, 2]), or the storage of an iterative approximation of that inverse
(quasi-Newton methods such as BFGS [9, p. 425ff]), are prohibitively expensive.
Conjugate gradient methods [3], which exactly minimize a d-dimensional uncon-
strained quadratic problem in d iterations without requiring explicit knowledge
of the curvature matrix, have become the method of choice for such problems.

Stochastic gradient. Empirical loss functions are often minimized using noisy
measurements of gradient (and, if applicable, curvature) taken on small, random
subsamples (“mini-batches”) of data, or even individual data points. This is done
for reasons of computational efficiency on large, redundant data sets, and out of
necessity when adapting online to a continual stream of noisy, potentially non-
stationary data. Unfortunately the fast convergence of conjugate gradient breaks
down when the function to be optimized is noisy, since this makes it impossible to
maintain the conjugacy of search directions over multiple iterations. The state of
the art for such stochastic problems is therefore simple gradient descent, coupled
with adaptation of local step size and/or momentum parameters.

Curvature matrix-vector products. The most advanced parameter adapta-
tion methods [4–7] for stochastic gradient descent rely on fast curvature matrix-
vector products that can be obtained efficiently and automatically [7, 8]. Their
calculation does not require explicit storage of the Hessian, which would be
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O(d2); the same goes for other measures of curvature, such as the Gauss-Newton
approximation of the Hessian, and the Fisher information matrix [7]. Algorithmic
differentiation software1 provides generic implementations of the building blocks
from which these algorithms are constructed. Here we employ these techniques
to efficiently compute Hessian-gradient products which we use to implement a
stochastic conjugate direction method.

2 Stochastic Quadratic Optimization

Deterministic bowl. The d-dimensional quadratic bowl provides us with a
simplified test setting in which every aspect of the optimization can be controlled.
It is defined by the unconstrained problem of minimizing with respect to d
parameters w the function

f(w) =
1
2

(w −w∗)T JJT (w −w∗) , (1)

where the Jacobian J is a d × d matrix, and w∗ the location of the minimum,
both of our choosing. By definition the Hessian H̄ = JJT is positive semidefinite
and constant with respect to the parameters w; these are the two crucial sim-
plifications compared to more realistic, nonlinear problems. The gradient here is
ḡ = ∇f(w) = H̄(w −w∗).

Stochastic bowl. The stochastic optimization problem analogous to the deter-
ministic one above is the minimization (again with respect to w) of the function

f(w,X) =
1
2 b

(w −w∗)T J XXT JT (w −w∗) , (2)

where X = [x1,x2, . . . xb] is a d× b matrix collecting a batch of b random input
vectors to the system, each drawn i.i.d. from a normal distribution: xi ∼ N(0, I).
This means that E[XXT ] = b I, so that in expectation this is identical to the
deterministic formulation:

EX [f(w,X)] =
1
2 b

(w −w∗)T J E[XXT ]JT (w −w∗) = f(w) . (3)

The optimization problem is harder here since the objective can only be probed
by supplying stochastic inputs to the system, giving rise to the noisy estimates
H = b−1J XXT JT and g = ∇wf(w,X) = H(w − w∗) of the true Hessian
H̄ and gradient ḡ, respectively. The degree of stochasticity is determined by the
batch size b; the system becomes deterministic in the limit as b→∞.

Line search. A common optimization technique is to first determine a search
direction, then look for the optimum in that direction. In a quadratic bowl, the
step from w to the minimum along direction v is given by

∆w = − gT v

vT Hv
v . (4)

1 See http://www-unix.mcs.anl.gov/autodiff/



Hv can be calculated very efficiently [8], and we can use (4) in stochastic settings
as well. Line search in the gradient direction, v = g, is called steepest descent.
When fully stochastic (b=1), steepest descent degenerates into the normalized
LMS method known in signal processing.

Choice of Jacobian. For our experiments we choose J such that the Hessian
has a) eigenvalues of widely differing magnitude, and b) eigenvectors of interme-
diate sparsity. These conditions model the mixture of axis-aligned and oblique
“narrow valleys” that is characteristic of multi-layer perceptrons, and a primary
cause of the difficulty in optimizing such systems. We achieve them by imposing
some sparsity on the notoriously ill-conditioned Hilbert matrix, defining

(J)ij =

{
1

i+j−1 if imod j = 0 ∨ j mod i = 0 ,

0 otherwise .
(5)

We call the optimization problem resulting from setting J to this matrix the
modified Hilbert bowl. In the experiments reported here we used the modified
Hilbert bowl of dimension d = 5, which has a condition number of 4.9 · 103.

Stochastic Ill-Conditioning. Such ill-conditioned systems are particularly
challenging for stochastic gradient descent. While directions associated with
large eigenvalues are rapidly optimized, progress along the floor of the valley
spanned by the small eigenvalues is extremely slow. Line search can ameliorate
this problem by amplifying small gradients, but for this to happen the search
direction must lie along the valley floor in the first place. In a stochastic setting,
gradients in that direction are not just small but extremely unlikely : in contrast
to deterministic gradients, stochastic gradients contain large components in di-
rections associated with large eigenvalues even for points right at the bottom of
the valley. Fig. 1 illustrates (for b = 1) the consequence: although a line search
can stretch the narrow ellipses of possible stochastic gradient steps into circles
through the minimum, it cannot shift any probability mass in that direction.

3 Stochastic Conjugate Directions

Looking for ways to improve the convergence of stochastic gradient methods in
narrow valleys, we note that relevant directions associated with large eigenval-
ues can be identified by multiplying the (stochastic estimates of) Hessian H
and gradient g of the system. Subtracting the projection of g onto Hg from g
(Fig. 2, left) then yields a conjugate descent direction c that emphasizes direc-
tions associated with small eigenvalues, by virtue of being orthogonal to Hg:

c = g − g THg

g THHg
Hg

Fig. 2 (right) shows that stochastic descent in direction of c (dashed) indeed
sports much better late convergence than steepest descent (dotted). Since direc-
tions with large eigenvalues are subtracted out, however, it takes far longer to
reach the valley floor in the first place.



Fig. 1. Distribution of stochastic gradient steps from equivalent points with (circles,
right) vs. without (ellipses, left) line search in ill-conditioned quadratic bowl. Black is
high, white low probability density. Compare to deterministic steepest descent (arrows).

Two-dimensional method. We can combine the respective strengths of gra-
dient and conjugate direction by performing, at each stochastic iteration, a two-
dimensional minimization in the plane spanned by g and Hg. That is, we seek
the α1, α2 that produce the optimal step

∆w = α1g + α2Hg . (6)

Using g
def= H(w − w∗) gives ∆g = α1Hg + α2HHg. We can now express

the optimality condition as a system of linear equations in the quadratic forms
qi

def= gT Hig:
gT (g + ∆g) = q0 + α1 q1 + α2 q2

!= 0 (7)

gT H (g + ∆g) = q1 + α1 q2 + α2 q3
!= 0 (8)

g

c

Hg
.
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Fig. 2. Left: construction of conjugate direction c via projection of gradient g onto Hg.
Right: log-log plot of average loss (over 100 runs) vs. number of stochastic iterations
(b = 3) in modified Hilbert bowl when minimizing in: direction of g (dotted), direction
of c (dashed), plane spanned by g and Hg (solid), and subspace spanned by g, Hg,
and HHg (dash-dotted). Compare to normal conjugate gradient (dot-dash-dotted).



Solving this yields

α1 =
q0q3 − q1q2

q 2
2 − q1q3

, α2 =
q 2
1 − q0q2

q 2
2 − q1q3

(9)

Fig. 2 (right) shows that this approach (solid line) indeed combines the advan-
tages of the gradient and conjugate directions.

Stochastic Krylov subspace. This approach can be extended to minimization
in the m-dimensional, stochastic Krylov subspace Km

def= [g,Hg, . . . Hm−1g]
with m ≤ min(d, b). The expansion of ∆g in Km is given by

∆g =
m∑

i=1

αi Hig ; (10)

for optimality we require

q + Qα
!= 0 ⇒ α = −Q−1q (11)

with

q
def=


q0

q1

...
qm−1

 , α
def=


α1

α2

...
αm

 , Q
def=


q1 q2 . . . qm

q2 q3 . . . qm+1

...
...

. . .
...

qm qm+1 . . . q2m−1

 (12)

Q and α can be flipped to bring (11) into the form of a standard Toeplitz system,
which can be solved in as little as O

(
m log2m

)
operations [9, p. 92ff]. The

quadratic forms q0 through q2m can be calculated efficiently as inner products
of the m fast Hessian-vector products Hig , 0 ≤ i ≤ m. Fig. 2 (right) illustrates
the rapid convergence of this approach for m = 3 (dash-dotted).

Relation to conjugate gradient methods. It has not escaped our notice
that on quadratic optimization problems, instead of solving this linear system of
equations explicitly, we can equivalently perform m steps of ordinary conjugate
gradient within each mini-batch to find the optimum in the Krylov subspace
Km. Instead of a single m-dimensional optimization, we then have m successive
line searches according to (4). The initial search direction is set to the gradient,
v0 := g; subsequent ones are calculated via the formula

vt+1 =
g T

t+1Hvt

v T
t Hvt

vt − gt+1 (13)

or one of its well-known variants (Fletcher-Reeves, Polak-Ribiere [9, p. 420ff]).
The crucial difference to standard conjugate gradient techniques is that here we
propose to perform just a few steps of conjugate gradient within each small,
stochastic mini-batch. A reset to the gradient direction when moving on to an-
other mini-batch is not only recommended but indeed mandatory for our ap-
proach to work, since otherwise the stochasticity collapses the Krylov subspace.
To illustrate, we show in Fig. 2 (dot-dash-dotted) the inadequate performance
of standard conjugate gradient when misapplied in this fashion.



4 Summary and Outlook

We considered the problem of stochastic ill-conditioning of optimization prob-
lems that lead to inefficiency in standard stochastic gradient methods. By geo-
metric arguments we arrived at conjugate search directions that can be found
efficiently by fast Hessian-vector products. The resulting algorithm can be in-
terpreted as a stochastic conjugate gradient technique and as such introduces
Krylov subspace methods into stochastic optimization. Numerical results show
that our approach outperforms standard gradient descent for unconstrained
quadratic optimization by orders of magnitude in a noisy scenario where stan-
dard conjugate gradient fails.

At present we only consider sampling noise due to small batch size. Future
work will address the question of noise in the target vector w∗, corresponding
to unrealizable approximation problems, which may require the incorporation
of some form of step size annealing or adaptation scheme. We are also investi-
gating the extension of our techniques to nonlinear optimization problems, such
as online learning in multi-layer perceptrons. In this case, conjugate gradient
methods are not equivalent to the explicit solution of (11), and it is an open
question which approach is preferable in the stochastic gradient setting.
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