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Abstract

Finding the equilibrated configuration of
atomic clusters modeled by the Lennard-
Jones potential poses a challenging task
to numerical optimization strategies as the
number of local minima grows exponentially
with the number of atoms in the cluster. We
use this massively multimodal problem to
test different evolutionary, deterministic and
randomized gradient methods with respect to
their global search behavior. The randomized
gradient method was designed to combine the
advantages of gradient and stochastic direct
optimization.

1 Introduction

The Lennard-Jones (LJ) potential models van der
Waals interactions between noble gas atoms. The LJ
potential is given by
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where € is the pair well depth and 2'/%5 is the pair
separation at equilibrium. r;; is the distance between
atoms ¢ and j. Throughout this study, reduced units
€ =1 and o = 1 are used. Thus, the potential can be
expressed as
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The aim is to find a spatial distribution of atoms with
minimal energy. The atomic coordinates r;; are the
optimization parameters and the number of atoms is
N which results in n = 3N parameters.

Determining the global minima of LJ clusters poses a
challenging task for numerical optimization techniques
as the number of local minima on the potential en-
ergy surface grows exponentially with the number of
atoms N in the cluster [14]. For N = 98, there ex-
ist an estimated number of local minima in the order
of 10%° [14]. Global optimization techniques to min-
imize the potential usually combine global and local
search algorithms: a global search algorithm, e.g., ge-
netic algorithm [1, 2, 18], simulated annealing [17],
basin-hopping [15], or Monte Carlo suggests points
from where a local optimization (e.g., conjugate gra-
dient method) is started. With the local minima in-
formation, the search is continued on the global level
and so on. One distinguishes between biased (incor-
porating problem-specific knowledge in initializing the
search or in the search process) and unbiased search.
An example for biased search is to define initial con-
figurations according to structural motifs which are
frequently found in atomic aggregates of the consid-
ered size. While biased search is found to converge
faster, it more likely gets trapped in local optima. To
find global minima, it is suggested to use an unbiased
technique.

We employ unbiased search techniques, in particular
(i) stochastic direct (= evolutionary), (ii) determinis-
tic gradient (= conjugate gradient), and (iii) random-
ized gradient (= asynchronous conjugate gradient) op-
timization techniques. Their use is motivated as fol-
lows:

1. Since the search space is multimodal, stochastic
methods may be beneficial for the search for the
global optimum.



2. Since the gradient is available analytically, it
should be used to enhance the speed to find the
global optimum.

3. The combination of randomness and usage of gra-
dient information appears appealing as it might
amplify both advantageous effects.

We compare the different algorithms with each other
and with the putative global minima reported in [16, 9]
of configurations with up to N = 309 atoms. It is not
our primary goal to outperform these reported global
optima, but rather to assess the differences between
the selected search strategies.

In Section 2, we present evolutionary algorithms in
comparison to the deterministic conjugate gradient
method, while Section 3 shows how the asynchronous
conjugate gradient method compares with the deter-
ministic gradient technique. The work is concluded in
Section 4.

2 Optimization Using Evolutionary
Algorithms

2.1 Chosen Evolutionary Methods

Our evolutionary test bed consists of evolution strate-
gies (ES), namely the (1+1)-ES with 1/5 success rule
[8, 13], the evolution strategy with covariance matrix
adaptation CMA-ES [3, 4], and its extension for a
larger population size, here called parallel CMA-ES
(pCMA-ES) [6, 5]. As one of the first developed evo-
lution schemes, the (1+1)-ES with 1/5 success rule
is relatively easy to implement and has been investi-
gated thoroughly from a theoretical viewpoint. The
CMA-ES has been found to converge much faster for
nonseparable and badly scaled functions than evolu-
tion strategies with other adaptation schemes [4]. Its
extension to the pCMA-ES makes it possible to vary
population sizes in a larger range than in the CMA-
ES, which is especially favorable if the population can
be chosen large, e.g., on massively parallel computers,
which results in a reduction of time complexity from

O(n?) to O(n) [6, 5]

We compare these evolution strategies with the de-
terministic conjugate gradient technique (CG) as de-
scribed in the subroutine called frprmn in Numerical
Recipes [7], p. 417.

The initial cluster is designed as a cubic lattice in
which each edge contains N'/3 (N = 8,27) atoms. The
optimization of this cluster by CG results in a subop-
timal structure, that is, the distance between atoms
takes up its equilibrium value, but the cubic lattice

structure remains. To allow the search for a global op-
timum, the atoms are randomly perturbed. This per-
turbed cluster is the initial configuration for optimiza-
tion using the four methods above. The search is ter-
minated as soon as the difference between the current
function value and the global optimum is smaller than
0.0001 or the difference between objective functions
from one generation to the next is less than 0.0001 in
50 subsequent generations. The performance of evo-
lution strategies is measured by averaging the results
of 100 and 20 runs for N = 8 and N = 27, respec-
tively, while for CG one run is sufficient. In all runs,
the initial cluster configuration is the same. Runs dif-
fer only in the seed of the random number generator.
The performance of ESs can be measured by the suc-
cess rate. For N = 8, the success rate is defined as
the ratio of the number of runs that yielded the global
optimum and the total number of performed runs (=
100). Because the global optimum was never reached
for N = 27, we define the success rate in this case as
the ratio of the number of runs that yielded better re-
sults than CG and the total number of performed runs
(= 20).

2.2 Results

Both optima found by the different strategies and suc-
cess rates are reported in Table 1.

Table 1: Global optima [16], conjugate gradient op-
tima, and success rates in % for the (1+1)-ES, the
(21,10)-CMA-ES, and the (167,64)-pCMA, respec-
tively, for the optimization of clusters with sizes N = 8
and N = 27. For N = 8, the success rate is the ratio
of the number of runs that yielded the global optimum
and the total number of performed runs (= 100). For
N = 27, the success rate is the ratio of the number of
runs that yielded better results than CG and the total
number of performed runs (= 20).

N Global CG | Success rates [%] for
opt. [16] (141), CMA, pCMA

8 -19.82149 | -18.97606 50 43 39

27 | -112.87358 | -106.1820 60 85 80

The different ESs perform similarly for the N = 8 clus-
ter yielding the global minimum in almost half of the
cases on average. Note that the success rates depend
on the initial configuration of the cluster. For N = 27,
the success rates are measured relative to the perfor-
mance of conjugate gradient. Again, a different initial
configuration is likely to yield different numbers for



both CG and ES. The fact that the global optimum
in this configuration is not found by any ES run is
not surprising given that the function is highly multi-
modal and only a limited number of optimization runs

with a limited number of function evaluations could
be afforded.

An interesting result occured for the pCMA-ES us-
ing N = 27 atoms. Here, different population sizes
(p =16,\ = 64) and (u = 27, A = 104) were tested.
While the (161,64) strategy yielded a success rate of
80%, the (271, 104) method had difficulties to converge
to any local optimum. The undesirable behavior for
larger populations may be due to the multimodality of
the function. Originally designed for local optimiza-
tion, the pCMA-ES is expected to adapt the muta-
tion distribution the better, the larger the population.
However, we believe that in multimodal function land-
scapes the mutation distribution is disturbed by infor-
mation from several local minima. This effect may
be increased as the population size increases. Instead
of exploiting the information about one optimum, the
pCMA-ES with large populations acquires mutation
distributions from multiple optima that are useless for
local optimization. This assumption needs to be vali-
dated in future studies.

CPU times for one run are approximately 1sfor N = 8
for all strategies, and for N = 27 they vary between 1s
(CG) and 2 — 3min for (161, 64)-pCMA-ES. The com-
putational effort for the eigenvalue/eigenvector anal-
ysis in the CMA-ES increases with O(n®) [7]. Since
one function evaluation is cheap compared with the
solution of the eigensystem, one has to expect high
computational cost for optimizing large clusters. For
the same reason, analyses for clusters with N > 27 are
omitted. In general, our results are not conclusive as
to whether ES or CG is the better search method.

3 Optimization Using the
Asynchronous Conjugate Gradient
Method

3.1 Asynchronous Conjugate Gradient
Method

In a next step, we combine two features of optimization
techniques, namely stochasticity and usage of gradient
information, in the hope that this is beneficial for the
LJ cluster optimization which is characterized by mul-
timodality and availability of the gradient.

The asynchronous conjugate gradient method is a par-
tially randomized conjugate gradient method. We ap-
ply it to the LJ optimization because we hope that

by introducing stochasticity in the optimization algo-
rithm its performance is increased for optimizing large
clusters.

The move from deterministic to randomized conjugate
gradient is comparable to the move from deterministic
to stochastic direct optimization methods (e.g., ES):
In both cases, it is intended to obtain an increase in
robustness, e.g., against getting trapped in local op-
tima etc.

A difference between randomized gradient and
stochastic direct techniques can be seen in the follow-
ing respect: In randomized gradient algorithms, the
stochasticity is introduced in the order in which sub-
problems of the objective function are optimized; in
stochastic direct methods, e.g., ES, the stochasticity
is inserted (usually) in the mutation step.

To use the asynchronous conjugate gradient algo-
rithm, the objective function needs to be reformulated.
Therefore, we write the potential for LJ cluster opti-
mization as

N N N
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where g;; as in Equation 3, and f; to fx are subprob-
lems or batches.

The algorithm of aCG reads as follows:

DO until termination

s = permute (1,...,N)

DO i = 1,N
Minimize fy; using CG.
ENDDO
ENDDO

Therefore, the asynchronous conjugate gradient algo-
rithm is characterized by minimizing subproblems f,,
instead of minimizing the potential E. This means,
that in aCG the atom positions are incrementally (=
asynchronously) updated and so is the potential.

The relationship of the potentials can be expressed as
E.,cg = 2E. This can be seen when Equation 2 is
rewritten as follows:

N N N
E=4Z 91j+4z g2j+...+4 Z gn-1)j- (5)
i>1 i>2 J>N-1

However, the factor of 2 effectuates just a scaling of
the potential and therefore does not affect the opti-
mization.




Note also that for minimizing fy;), we compute the
search direction and perform a line search in that di-
rection (as in deterministic CG). However, the differ-
ence to deterministic CG is that in aCG the gradient
of fs(;) needs to be computed (and not the gradient of
the potential E as in deterministic CG).

The asynchronous conjugate gradient method (aCG)
is not to be confused with the more familiar stochastic
approximation of gradients, which has recently been
applied to the conjugate gradient method [10, 11, 12
although both types of algorithms employ stochas-
ticity. While stochastic conjugate gradient (sCG) in-
volves two levels of randomization, aCG is character-
ized by one level of randomization for Lennard-Jones
optimization. In this sense, asynchronous CG can be
seen as intermediate step between deterministic CG
and stochastic CG. In our application, the first level
of randomization in aCG is introduced by perturbing
the order of the indexes. In sCG, a second level of ran-
domization is involved: Besides perturbing the atom
indexes, sCG would approximate f; to fy by taking
into account the interactions of one atom to a ran-
domly selected subset of atoms (whereas aCG takes
into account the interactions of one atom to all other
N —1 atoms). A more detailed description of sSCG can
be found in [10, 11].

3.2 Results

We compare the deterministic conjugate gradient
method (CG) with the asynchronous conjugate gra-
dient method (aCG).

All cluster configurations start from a cubic lattice
in which each edge of length 1 contains N'/3 (N =
8,27,64,81,125,216,343) atoms. To avoid symmetry,
the atoms are randomly perturbed by adding to the
coordinate values of the atoms uniformly random num-
bers multiplied with 0.01. With this configuration, we
perform one CG and one aCG run. With a new ran-
dom initialization, we produce a new initial configura-
tion, and perform another CG and aCG run, etc., until
we obtain statistics for 100 runs for both optimization
methods.

Our statistics, summarized in Tables 2 and 3, include
for both methods:

the number of iterations to reach the goal, aver-
aged over 100 runs,

the lowest number of iterations out of 100 runs,

the optimum value, averaged over 100 runs,

the lowest optimum value out of 100 runs,

e the CPU time per run, averaged over 100 runs,

e the success rate, that is, the ratio of runs yielding
the global optimum to the total number of runs
(=100),

e the number of failures (= crashes), that is, the
ratio of number of runs not converging to any op-
timum to the total number of runs (the results of
failed runs are not included in the statistics).

The conjugate gradient subroutine of [7], p. 417, called
frprmn, contains termination criteria that are deter-
mined by the following parameter settings: conver-
gence tolerance ftol = 10~2° for both CG and aCG;
small number EPS = 1071% for both CG and aCG;
maximum number of iterations (one iteration includes
determining the search direction and performing line
search) ITMAX = 5000 for CG and ITMAX = 4 for
aCG. The difference in the setting of the maximum
number of iterations originates from the fact that in
aCG we are not interested in a fully converged solu-
tion but in an approximation of the solution (recall
that the optimized subproblems f;, are also only ap-
proximations of the true potential).

The figures given in Tables 2 and 3 imply the following
conclusions:

Number of failures. The number of failures is 0 for
all configurations for aCG and in the range of 0-
2% for CG !. The rare occuring failures of CG
could be due to symmetry in the configuration.
Although the difference is small, aCG is less prone
to failure than CG.

Cost. The cost of the algorithm is measured in terms
of average number of iterations and CPU time.
The number of iterations in aCG is always larger
than in CG. While the number of iterations in
CG is in the order of N, in aCG the average num-
ber of iterations becomes drastically larger with
increasing configuration size. For a fair compari-
son, however, one should recall that one iteration
includes determining the search direction and per-
forming line search, which accordingly requires to
compute several times the objective function and
its derivative: While CG requires the potential
E (with interactions between all atoms) and its
derivative, aCG needs only a subset of the poten-
tial, fs; (with interactions between one atom and

!Please note that the numbers for CG reported here
are obtained with a repeated call to the conjugate gradient
subroutine frprmn [7]. Without this, the number of failures
is slightly higher.



Table 2: Statistics over 100 runs for CG and aCG for
clusters of N = 8,27,64 atoms.

Table 3: Statistics over 100 runs for CG and aCG for
clusters of N = 125,216, 343 atoms.

[N=38 | CG | aCG | [ N=125 | CG | aCG |
Average no. iterations 32 982 Average no. iterations 201 228140
Lowest no. iterations 21 320 Lowest no. iterations 69 92500
Average optimum value | -19.34319 | -19.33511 Average optimum value | -677.9642 | -676.5854
Lowest optimum value | -19.82149 | -19.82149 Lowest optimum value -693.5336 | -693.5863
Global optimum [16] -19.82149 | -19.82149 Global optimum [16] -721.3032 | -721.3032
CPU per run [s] 0.00361 0.08111 CPU per run [s] 5.88375 79.7644
Success rate [%)] 26 35 Success rate [%)] 0 0
Number of failures [%] 2 0 Number of failures [%] 0 0

| N=27 | CG | aCG [ N =216 | CG | aCG |
Average no. iterations 95 16534 Average no. iterations 242 523229
Lowest no. iterations 52 5076 Lowest no. iterations 113 206496
Average optimum value | -107.0278 | -107.0899 Average optimum value | -1257.128 | -1253.199
Lowest optimum value | -111.8644 | -111.2919 Lowest optimum value -1288.924 | -1274.222
Global optimum [16] -112.8736 | -112.8736 Global optimum [9] -1340.711 | -1340.711
CPU per run [s] 0.12958 2.35984 CPU per run [s] 21.33470 | 351.7713
Success rate [%)] 0 0 Success rate [%)] 0 0
Number of failures [%] 0 0 Number of failures [%] 0 0

| N =64 | CG | aCG | N =343 | CG | aCG |
Average no. iterations 158 87116 Average no. iterations 283 949602
Lowest no. iterations 61 16896 Lowest no. iterations 121 489804
Average optimum value | -310.3006 | -310.8228 Average optimum value | -2089.456 | -2085.439
Lowest optimum value | -316.0594 | -319.1035 Lowest optimum value -2160.145 | -2132.781
Global optimum [16] -329.6201 | -329.6201 Global optimum not known | not known
CPU per run [s] 0.91769 17.8794 CPU per run [s] 49.05392 1013.271
Success rate [%] 0 0 Success rate [%] - -
Number of failures [%] 1 0 Number of failures [%] 0 0

all other neighbors) and its derivative — thus, one
iteration in aCG is clearly computationally less
expensive than in CG. This difference is consid-
ered in the measurement of the average CPU time
per run. Here, it can be seen, that aCG is by a
factor of 14-21 slower than CG, independent of
the configuration size. That means, the optimiza-
tion time grows in N for both CG and aCG, or
in other words, the two algorithms have the same
time complexity. In this respect, CG and aCG
perform equally well.

Performance. The performance can be measured in

terms of the success rate and the average and low-
est optimum values. The success rate is larger
than 0 only for the N = 8 configuration. For
N = 8, aCG with a success rate of 35% per-
forms better than CG with a success rate of 26 %.
For larger configurations, neither CG nor aCG
is able to find the global optimum in 100 runs.
This is not surprising given that the number of

local optima rises exponentially with N. There-
fore, to assess the performance of both algorithms
for N > 8, we compare their average and lowest
optimum values. The average optimum found by
aCG is better than CG for N = 27,64 and worse
for N = 125,216, 343, while the lowest optimum
found by aCG is better than CG for N = 64,125
and worse for N = 27,216, 343. These figures are
not conclusive as to whether CG or aCG performs
better.

In summary, the deterministic and asynchronous con-
jugate gradient algorithms yield similar results. The
time complexity of both algorithms is the same but
aCG is slower than CG. The goal that aCG would out-
perform CG for larger clusters was not accomplished,
although aCG achieved a small gain in robustness for
small clusters.



4 Conclusions

Lennard-Jones clusters were optimized using (i)
stochastic direct (= evolutionary), (ii) deterministic
gradient (= conjugate gradient), and (iii) randomized
gradient (= asynchronous conjugate gradient) search
algorithms. Each strategy shows advantages and dis-
advantages with respect to run time or performance,
but the differences are so marginal that we cannot con-
clude which of these methods is best for this applica-
tion. It remains to future investigations if a hybridiza-
tion (= combination of global and local search in a
separate/sequential way) of different search paradigms
shows a better performance than our approach to com-
bine stochasticity and gradient usage in a single search
method.
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